Science Turned Upside Down

Revolution in Science

by I. Bernard Cohen
Harvard University Press (Belknap Press), 711 pp., $25.00

The word “revolution” first brings to mind violent upheavals in the state, but ideas of revolution in science, and of political revolution, are almost coeval. The word once meant only a revolving, a circular return to an origin, as when we speak of revolutions per minute or the revolution of the planets about the sun. As a political metaphor, a revolution could, in that sense, mean only a return to better times, or to the true constitution, a ridding of excess or usurpers. The transition to our modern idea was made with the Glorious Revolution of 1688, which made Parliament supreme in England and brought in a Bill of Rights. Yet it could be called a revolution, in those days, partly because of the old sense of the word: the traditional rights of Englishmen had been returned to them. A century later the American and French revolutions were definitive breaks with the past, irreversible establishments of a new order, but even in those cases there was a lingering sense of return. The original rights of man had been restored.

Revolution in science parallels these developments. At the time of the Glorious Revolution there was some rather inconsequential talk of the new science of the seventeenth century being revolutionary. A century later Lavoisier—progenitor of modern chemistry—confidently and unself-consciously proclaimed that he and his peers had effected a revolution. This was a truly irreversible change, and not a return to some older knowledge. It is possible to argue that our present conception of revolution was staked out more securely in science than in political action.

Despite a certain amount of rhetoric, such as “the second American Revolution,” there is a fair consensus about which events in the affairs of a people can rightly be called revolutions. It is also clear that such revolutions are proper objects of study for the historian. In science, however, the label of “revolution” has been so taken up by public relations that any innovative design for an aircraft wing, or technique for splicing genes, is hailed as revolutionary. The merely novel is hyped into a revolution. If we resist such exaggeration we will settle on the work of certain scientists as revolutionary: Copernicus, Darwin, or Einstein, for example.

But it is not evident that revolution should be as interesting in the history of science as in the history of nations. The French Revolution was important because it was a revolution. Darwin was important, but being revolutionary is hardly what makes his contribution to science important. One can even begin to wonder whether to call an event a revolution in science is merely to give an honorific award, like a knighthood or a Nobel prize. Not surprisingly, “revolution” was not a term used in an analytic or theoretical way in the history or philosophy of science until after the Second World War. Since then, however, it has been a central part of a dialogue, or confrontation, between two very different approaches. One is evolutionary and continualist. The…

This article is available to online subscribers only.
Please choose from one of the options below to access this article:

Print Premium Subscription — $99.95

Purchase a print premium subscription (20 issues per year) and also receive online access to all content on

Online Subscription — $69.00

Purchase an Online Edition subscription and receive full access to all articles published by the Review since 1963.

One-Week Access — $4.99

Purchase a trial Online Edition subscription and receive unlimited access for one week to all the content on

If you already have one of these subscriptions, please be sure you are logged in to your account. If you subscribe to the print edition, you may also need to link your web site account to your print subscription. Click here to link your account services.