Brave New World

Solid Clues: Quantum Physics, Molecular Biology, and the Future of Science

by Gerald Feinberg
Simon and Schuster, 287 pp., $17.95

Gerald Feinberg, a physicist at Columbia University, writes that his book will “attempt to predict the changes that will take place over the next few decades in the content of science and in the lives of scientists,” especially physicists and biologists. He does not think that there is a “procedure for anticipating the future of science,” a science of science, but he supposes that he can identify the gaps in existing science and then “speculate on how they might be filled.” He also thinks that he can foretell future scientific developments “by analyzing the ways in which science has evolved in the past, and using these insights to make educated guesses about future breakthroughs.”

The result of Feinberg’s predictions is a scientific utopia, where computers share scientists’ thoughts, spare human organs are kept on hospital shelves like carburetors, and genetic engineers wave magic wands that cure inherited diseases. Forecasts of this kind are often bandied about, and laymen may wonder how seriously to take them. Feinberg’s book stimulated me to try to find out whether any such advances are foreseeable on the basis of present scientific knowledge and whether there are other important advances already in the making that are not foreseen in his book.

Feinberg believes that “computer capabilities are evolving very rapidly,” and that “computers will not only become better tools to aid human thought but also partners in human thought.” He asserts that “once we understand any intellectual activity well enough to describe clearly what it accomplishes, then eventually we can teach computers to do it.” He cites as an example advances in artificial intelligence that “could result in small computer packages with decision-making capabilities comparable to those of human beings” to replace human beings in space probes.

How likely are computers to develop in this way? Today computers are cleverer than people in some ways and stupider in others, but above all they are different. Computers work about three million times faster than brains, because electric pulses travel along nerves at a mere 100 meters a second, while they travel along metal wires at nearly 300,000 kilometers a second. The memory storage capacity of computers is enormous, since in addition to the thousands of millions of numbers stored in their own memory, they can be made to have almost instant access to a multitude of satellite discs and magnetic tapes. This allows computers to memorize the timetables and passenger bookings of all the world’s airlines and spurt out any part of this information at the pressing of a few buttons, something that no human brain could possibly do.

On the other hand, brains are more versatile—for example, they can create works of art and make scientific discoveries. The reasons for this may not all be known yet, but here are some of them. In a computer, each switch works as an on–off device and is normally connected to only three other switches, while each of the ten thousand million nerve …

This article is available to online subscribers only.
Please choose from one of the options below to access this article:

Print Premium Subscription — $94.95

Purchase a print premium subscription (20 issues per year) and also receive online access to all all content on nybooks.com.

Online Subscription — $69.00

Purchase an Online Edition subscription and receive full access to all articles published by the Review since 1963.

One-Week Access — $4.99

Purchase a trial Online Edition subscription and receive unlimited access for one week to all the content on nybooks.com.

If you already have one of these subscriptions, please be sure you are logged in to your nybooks.com account. If you subscribe to the print edition, you may also need to link your web site account to your print subscription. Click here to link your account services.