• Email
  • Single Page
  • Print

Small Wonders

The history of education in the twenty-first century may turn out to be like the history of medicine in the nineteenth century. Both medicine and education have great moral urgency. Passing on what we know to our children is, after all, one of the few ways we have of genuinely defying death; medicine just postpones it. Both medicine and education invoke knowledge to justify their authority. Doctors have always justified their practices by claiming that they understand how our bodies work. Educators have always justified theirs by claiming that they understand how our children’s minds work. But for most of history those claims were based on scarcely any systematic research. At best, they were pragmatic generalizations, the outcome of a long process of empirical tinkering.

During the last 150 years we have gradually begun to integrate real biological science into our medical practice. This has been one of the great scientific success stories. Surely even the most adamant postmodern critics of science believe that vaccinating babies is not just an exercise in patriarchal control. But our new biological knowledge has also told us that organisms and their illnesses are individual, variable, and complicated. And biology itself can’t determine what kind of medicine is worth having, and how much we’re willing to pay for it.

A similar story could unfold in education. In the last thirty years, we have begun to develop a science of children’s minds. This new research might be the equivalent of the scientific physiology that has transformed medicine. But it is unlikely to lead to some simple educational panacea. In fact, helping our children to be both smart and wise is likely to be just as difficult, as complicated and demanding, though just as valuable, as helping them to be healthy. And turning the scientific findings into practice depends on broader political and economic decisions.

Throughout history, our ideas about how children learn have informed our ideas about what education should be like. Calvin’s small sinners, Rousseau’s idealized innocents, Locke’s blank slates—all those particular images of children led to particular kinds of schools. Calvin, Rousseau, and Locke, and later Freud and B.F. Skinner, shared some basic assumptions. They assumed that children’s knowledge was a kind of oxymoron, that children were creatures of passion rather than reason, instinct rather than intellect. For better or for worse, teachers self-consciously shaped these natural creatures into rational, knowledgeable, civilized adults.

However, no one actually studied children systematically until the 1930s. That first empirical research, by Jean Piaget and Lev Vygotsky, reversed the traditional view. Piaget concluded that even very young children spontaneously and actively reasoned about the world. Vygotsky concluded that adults naturally and spontaneously did things that helped children to reason about the world. In the Sixties, Piaget and Vygotsky were rediscovered as part of the new discipline of “cognitive science.” From the findings of that science, it turns out that our everyday behavior, the way we naturally see, speak, think, and act, depends on abstract and complex kinds of knowledge, including knowledge of how the natural world works and of the intentions of other people. An important branch of cognitive science studies how children develop this knowledge.

As a result, we have learned more about what children know and how they learn in the last thirty years than we did in the preceding two thousand years. In fact, Piaget and Vygotsky have received the ultimate accolade of science; they inspired research that overturned their own theories. Piaget, for example, still thought children’s reasoning was egocentric, “pre-causal,” and dominated by appearances. The new research shows that four-year-old children already are able to take the perspective of others, to infer causes, and to go beyond superficial appearances. Children actually know and learn more than Piaget and Vygotsky thought.1

Yet you could read much of the current debate about educational policy and have no idea that this research exists. The debate is largely dominated by a “conservative” view on the one hand and a “postmodern” view on the other, both of which are equally uninformed by cognitive science. One side argues for the narrow inculcation of specific skills and facts. The other side assumes that education can’t pass on an objective body of knowledge, but can only provide therapy and “empowerment.”

For some time now, there have been psychologists and teachers who have tried to integrate science and education. They have taken on the heroic but difficult task of the nineteenth-century pioneers of scientific medicine. Most of these educators have been in the “progressive” tradition associated with John Dewey. Dewey himself had no empirical evidence about children, but many of his successors were heavily influenced by Piaget and Vygotsky. Most recently, Howard Gardner has taken on the job of trying to change our schools in the light of our new knowledge about children. In a series of lucid and humane books, Gardner has introduced the ideas of developmental and cognitive psychology to a broader audience, and has suggested how those ideas might lead to educational reform.

In his newest book, The Disciplined Mind, Gardner argues for what he calls “education for understanding.” First, he presents a survey of recent scientific research, something he has also done at greater length in his earlier books. He argues that the new research can be used to help design a new kind of curriculum. He proposes that children should be introduced in depth to a few unequivocally important topics in science, art, and history, and that this introduction could provide the basis for further extending their knowledge.

Gardner also continues the argument he has made in earlier books that there are “multiple intelligences”—different ways of understanding the world that include such things as “social” and “musical” intelligence as well as the more standard “logical” and “verbal” intelligence. Given these “multiple intelligences,” children could approach important topics by many different routes. Finally, he suggests that, in practice, a number of alternative curriculums, including his own, but also including more “conservative” or “post-modern” curriculums, might be taught at different schools.

Gardner grounds his ideas in what we might call developmental cognitive science. The basic idea of cognitive science is that the human mind is a computational device, though one that is profoundly unlike any existing computers. We’re computers that are made of cells rather than silicon; we’re computers that can produce conscious thoughts and reflections (though Lord knows how); and we’re computers that were programmed by evolution. We can speculate about these differences between the way our brains compute and the way current man-made digital machines compute; we simply don’t know now which differences will turn out to be important in the long run. But the undeniable fact is that the ideas of cognitive science have led to real discoveries about how the mind and brain work.2

The brain has to solve what we might call the problem of knowledge. We know about a world of people and actions, objects and events, words and meanings. But all that reaches us directly from that world are a few photons hitting our retinas, and a few air molecules vibrating at our ear drums. How do we get here from there? The premise of cognitive science is that we do this largely by computing. We rearrange and manipulate the information at our senses in systematic ways and we come up with an accurate picture of the outside world—what cognitive scientists call a representation.

For example, our visual system is designed to solve a difficult epistemological and computational problem. We live in a world of three-dimensional moving objects. But the information that actually reaches our eyes is just a two-dimensional pattern of photons. Somehow we have to reconstruct information about the objects from this pattern of photons. Our brains take the partial, incomplete, and fragmented information at our senses and use it find out the truth about the world we encounter.

We actually know a great deal about the machinery that allows us to do this. Vision scientists can determine which algorithms the visual system must use. They can work out the instructions that transform the information at our retinas into a representation of the outside world. They have even begun to see how the cells in our brain are connected in a way that lets them compute such algorithms. There are many different kinds of computations and representations involved in vision and they are combined in complicated ways. In many respects, evolution seems to have hit upon near-optimal strategies for solving the extremely difficult problem of vision. No existing computer vision program is even in the same ballpark. Our eyes are finely adapted to give us an accurate view of the world, and so are our brains.

Developmental cognitive science applies this model to children’s learning. Children also have to figure out the structure of the world from the photons at their eyes and sound waves at their ears. They have to solve the problem of knowledge. It turns out that even very young babies already construct remarkably accurate, abstract, and coherent representations of the world. But children also change their computations and representations as they gather more information about the world. And the new computations and representations are even more accurate than the earlier ones. Children are computers that can reprogram themselves. The adults who take care of children also seem designed to provide them with just the right kinds of information at the right time. The child’s computational system is really a sort of network; we adults are computers that are designed to help the child computers to reprogram themselves.

For example, one particularly difficult problem of knowledge is the “other minds” problem. How do we know that other people have minds, when all we can see are moving bodies? Recently, we have begun to understand how children solve this problem. There seems to be an innate basis for this kind of knowledge. When an infant looks at her mother’s face and a toy rattle, she already represents them quite differently. Infants already seem to know that other people have feelings that are like their own. But children also learn a great deal about minds. Before they are three years old, they have learned that, in addition to having feelings, people have perceptions and desires. By the time they reach school, they have also learned that other people have thoughts and that those thoughts may differ from their own thoughts. In the school-age years, without any explicit instruction, children go on to learn that different people may interpret information in different ways and that they have different personalities. Other people also help children to learn. The way that parents, and even older siblings, talk about thoughts and feelings seems to influence children’s ideas about the mind. Children learn about “everyday physics” and “everyday biology” in much the same way that they learn about “everyday psychology.” During the time they are at school, for example, they spontaneously develop new ideas about how weight and size are related, and what makes things alive. Children also spontaneously learn about language, numbers, and music.

  1. 1

    For some academic books on recent work in developmental cognitive science, see K. Bartsch and H. Wellman, Children Talk About the Mind (Oxford University Press, 1996); A. Gopnik and A.N. Meltzoff, Words, Thoughts, and Theories (MIT Press, 1997); L. Hirschfield and S. Gelman, editors, Mapping the Mind: Domain-specificity in Cognition and Culture (Oxford University Press, 1994). For a review article, see H.M. Wellman and S.A. Gelman, “Knowledge Acquisition in Foundational Domains,” in W. Damon, D. Kuhn, and R. Siegler, editors, Handbook of Child Psychology, Vol. 2: Cognition, Perception, and Language (John Wiley, 1997). For a more accessible forthcoming account, see A. Gopnik, A.N. Meltzoff, and P.K. Kuhl, The Scientist in the Crib: Minds, Brains and How Children Learn, to be published by William Morrow in September 1999.

  2. 2

    For accessible accounts of cognitive science, see Howard Gardner, The Mind’s New Science (Basic Books, 1985), and Steven Pinker, How the Mind Works (Norton, 1997).

  • Email
  • Single Page
  • Print