• Email
  • Single Page
  • Print

How Close to Catastrophe?

James Lovelock is among the planet’s most interesting and productive scientists. His invention of an electron capture device that was able to detect tiny amounts of chemicals enabled other scientists both to understand the dangers of DDT to the eggshells of birds and to figure out the ways in which chlorofluorocarbons (CFCs) were eroding the ozone layer. He’s best known, though, not for a gadget but for a metaphor: the idea that the earth might usefully be considered as a single organism (for which he used the name of the Greek earth goddess Gaia) struggling to keep itself stable.

In fact, his so-called Gaia hypothesis was at first less clear than that—“hardly anyone, and that included me for the first ten years after the concept was born, seems to know what Gaia is,” he has written. But the hypothesis has turned into a theory, still not fully accepted by other scientists but not scorned either. It holds that the earth is “a self-regulating system made up from the totality of organisms, the surface rocks, the ocean and the atmosphere tightly coupled as an evolving system” and striving to “regulate surface conditions so as always to be as favourable as possible for contemporary life.”

Putting aside questions of planetary consciousness and will (beloved as they were by an early wave of New Age Gaia acolytes), the theory may help us understand how the earth has managed to remain hospitable for life over billions of years even as the sun, because of its own stellar evolution, has become significantly hotter. Through a series of processes involving, among others, ice ages, ocean algae, and weathering rock, the earth has managed to keep the amount of heat-trapping carbon dioxide in the atmosphere, and hence the temperature, at a relatively stable level.

This homeostasis is now being disrupted by our brief binge of fossil fuel consumption, which has released a huge amount of carbon dioxide into the atmosphere. Indeed, at one point Lovelock predicts—more gloomily than any other competent observer I am aware of—that we have already pushed the planet over the brink, and that we will soon see remarkably rapid rises in temperature, well beyond those envisioned in most of the computer models now in use—themselves quite dire. He argues that because the earth is already struggling to keep itself cool, our extra increment of heat is particularly dangerous, and he predicts that we will soon see the confluence of several phenomena: the death of ocean algae in ever-warmer ocean waters, reducing the rate at which these small plants can remove carbon from the atmosphere; the death of tropical forests as a result of higher temperatures and the higher rates of evaporation they cause; sharp changes in the earth’s “albedo,” or reflectivity, as white ice that reflects sunlight back out into space is replaced with the absorptive blue of seawater or the dark green of high-latitude boreal forests; and the release of large amounts of methane, itself a greenhouse gas, held in ice crystals in the frozen north or beneath the sea.

Some or all of these processes will be enough, Lovelock estimates, to tip the earth into a catastrophically hotter state, perhaps eight degrees centigrade warmer in temperate regions like ours, over the course of a very few decades, and that heat will in turn make life as we know it nearly impossible in many places. Indeed, in the photo section of the book there is one picture of a red desert captioned simply “Mars now—and what the earth will look like eventually.” Human beings, a hardy species, will not perish entirely, he says; in interviews during his book tour, Lovelock has predicted that about 200 million people, or about one thirtieth of the current world population, will survive if competent leaders make a new home for us near the present-day Arctic. There may also be other survivable spots, like the British Isles, though he notes that rising sea levels will render them more an archipelago. In any event, he predicts that “teeming billions” will perish.

Lovelock, who is in his eighties, concedes that this is a gloomier forecast than those of scientists more actively engaged in peer-reviewed climatology; it is, in a sense, a visceral feeling. It should be approached somewhat skeptically, for Lovelock has been (as he has always forthrightly admitted) wrong before in his immediate reactions. Though he invented the machine that helped us understand the dangers of CFCs, he also blithely dismissed those dangers, arguing that they couldn’t do enough damage to matter. The American chemists Sherry Rowland and Mario Molina ignored his assurances and performed the groundbreaking work on the depletion of the ozone layer that won them the Nobel Prize. (And won for the planet an international agreement on the reduction of CFCs that allowed the earth a chance to repair the ozone hole before it opened so wide as to annihilate much of life through excess ultraviolet radiation.) Lovelock has also failed to identify any clear causal mechanism for his sudden heating hypothesis, explaining that he differs with more conventional forecasts mostly because he thinks they have underestimated both the extent of the self-reinforcing cycles that are causing temperatures to rise and the vulnerability of the planet, which he sees as severely stressed and close to losing equilibrium. It also must be said that parts of his short book read a little oddly—there are digressions into, say, the safety of nitrates in food that don’t serve much purpose and raise questions about the rigor of the entire enterprise.

That said, there are very few people on earth—maybe none—with the same kind of intuitive feel for how it behaves as a whole. Lovelock’s flashes of insight about Gaia illuminate many of the interconnections between systems that more pedestrian scientists have slowly been trying to identify. Moreover, for the past twenty years, the period during which greenhouse science emerged, most of the effects of heating on the physical world have in fact been more dire than originally predicted. The regular reader of Science and Nature is treated to an almost weekly load of apocalyptic data, virtually all of it showing results at the very upper end of the ranges predicted by climate models, or beyond them altogether. Compared with the original models of a few years ago, ice is melting faster; forest soils are giving up more carbon as they warm; storms are increasing much more quickly in number and size. As I’m writing these words, news comes across the bottom of my computer screen that a new study shows methane leaking from Siberian permafrost at five times the predicted rate, which is seriously bad news since methane is an even more potent greenhouse gas than CO2 .

In this fast-changing scientific puzzle, the Intergovernmental Panel on Climate Change (IPCC), which has given the world valuable guidance for a decade, stands the risk of being outrun by new data. The panel is supposed to issue a new report in the coming year summarizing the findings made by climate scientists since its last report. But it’s unlikely that its somewhat unwieldy procedures will allow it to incorporate fears such as Lovelock’s adequately, or even to address fully the far more mainstream predictions issued during the last twelve months by James Hansen of NASA, the planet’s top climatologist.1

Hansen is not quite as gloomy as Lovelock. Although he recently stated that the Earth is very close to the hottest it has been in a million years, he said that we still have until 2015 to reverse the flow of carbon into the atmosphere before we cross a threshold and create a “different planet.” When Hansen gave this warning last December we had ten years to change course, but soon we’ll have only nine years, and since nothing has happened in the intervening time to suggest that we’re gearing up for an all-out effort to reduce greenhouse gas emissions, the divergence between Hansen and Lovelock may be academic. (Somehow it’s small comfort to be rooting for the guy who says you’ve got a decade.)

What’s amazing is that even Al Gore’s fine and frightening film An Inconvenient Truth now lags behind the scientific cutting edge on this issue—the science is moving fast. It’s true that the world is beginning slowly to awaken to the idea that global warming may be a real problem, and legislatures (though not ours) are starting to nibble at it. But very few understand with any real depth that a wave large enough to break civilization is forming, and that the only real question is whether we can do anything at all to weaken its force.

It’s to the question of solutions to mitigate the effects of global warming that Lovelock eventually turns, which is odd since in other places he insists that it’s too late to do much. His prescriptions are strongly worded and provocative—he thinks that renewable energy and energy conservation will come too slowly to ward off damage, and that an enormous program of building nuclear reactors is our best, indeed our only, real option. “We cannot turn off our energy-intensive, fossil-fuel-powered civilization without crashing,” he writes. “We need the soft landing of a powered descent.” That power can’t come from wind or solar energy soon enough:

Even now, when the bell has started tolling to mark our ending, we still talk of sustainable development and renewable energy as if these feeble offerings would be accepted by Gaia as an appropriate and affordable sacrifice.

Instead, “new nuclear building should be started immediately.”

With his extravagant rhetoric, Lovelock does us a favor—it is true that we should be at least as scared of a new coal plant as of a new nuclear station. The latter carries certain obvious risks (which Lovelock argues convincingly loom larger than perhaps they should in our imaginations), while the coal plants come with the absolute guarantee that their emissions will unhinge the planet’s physical systems. Every potential source of non-carbon energy should be examined fairly to see what role it might have in avoiding a disastrous future. But Lovelock also undermines his own argument with what amounts to special pleading. He is a foe of wind power because, as he says, he doesn’t want his Devon countryside overrun with windmills, placing him in the same camp as Cape Cod vacationers resistant to wind farms offshore in Nantucket Sound or Vermonters reluctant to see some of their high ridgelines dotted with towering turbines. “Perhaps we are NIMBYs,” he writes, referring to the abbreviation for the phrase “Not In My Back Yard,” but

we see those urban politicians [pushing wind power] as like some unthinking physicians who have forgotten their Hippocratic Oath and are trying to keep alive a dying civilization by useless and inappropriate chemotherapy when there is no hope of cure and the treatment renders the last stages of life unbearable.

  1. 1

    See Jim Hansen, “The Threat to the Planet,” The New York Review, July 13, 2006.

  2. 2

    The Threat to the Planet’: An Exchange,” The New York Review, September 21, 2006.

  • Email
  • Single Page
  • Print