• Email
  • Single Page
  • Print

The Other Einstein

4.

Paradoxically, it appears that the myth of Einstein may have diminished the influence he might have had. To understand how and why this happened, we should ask who benefited by the diminishment of Einstein’s legacy from that of the greatest scientist of the last two centuries to the gentle and wise clown of popular imagination.

First of all, his executors stood to benefit. They saw their role as establishing the legacy of one of history’s greatest scientists. But the man himself was an embarrassment. Politically he had supported causes such as socialism, pacifism, and racial justice that were considered—in the America of 1955, when he died—on the fringe or worse. He was well known and admired as a Zionist, but the truth was more complicated. He was in favor of a homeland for Jewish refugees, but, in a statement many Zionists would have opposed, he also wrote to Chaim Weizmann in 1929 that “should we be unable to find a way to honest cooperation and honest pacts with the Arabs, then we have learned absolutely nothing from our 20,000 years of suffering.” When he turned down the offer of the presidency of Israel in 1953 he said, “My relationship with the Jewish people has become my strongest human tie.” But he also told his step-daughter Margot, “Were I to be president I would have to say to the Israeli people things they would not like to hear.”

Einstein’s political engagements were an embarrassment even for the director of the Institute for Advanced Study, who had taken great pains to recruit the famous scientist to Princeton. He took to opening Einstein’s mail and turning down invitations—including an invitation to visit the Roosevelts in the White House—without even consulting the man to whom they were addressed. Einstein had to threaten to resign from the institute to get access to his mail.

Einstein’s unruly Bohemian personal life was also an embarrassment, to which the executors, as Neffe notes, responded by destroying documents and restricting access. The executors even went to court to block Einstein’s son from publishing letters between his parents that had been passed down to him from his mother. The result was that key facts about Einstein’s messy personal life were hidden from view before those letters finally came into the hands of scholars in the last few years.

In fact, what is in these letters is far from producing the scandal that the executors may have feared. What stands out instead is banal; his two marriages were not very different from those of many creative people today. How many marry their college soulmates only to have the relationship collapse in the face of diverging careers and the pressures of raising children? How many have weathered a difficult divorce without writing some angry letters that they would not want to see published?

Einstein’s scientific colleagues had even more to gain by the establishment of a myth that left him honored but unheeded. During his years as a professor and director of the Kaiser Wilhelm Physical Institute at the University of Berlin up to 1933, Einstein was a formidable obstacle to those who sought to establish quantum mechanics as the unquestioned paradigm for the new physics. This was so because his arguments were the hardest to answer and because of his unquestioned status as the dominant intellectual figure of twentieth-century science, holder of a prestigious chair in what was at the time the capital of science.

But once Einstein moved to the Institute for Advanced Study at Princeton he was no longer seen as a leading figure among scientists. His dissent from quantum mechanics and his entire philosophical approach to scientific research was an embarrassment to his younger American colleagues. While they may have been happy to have the old master as a trophy of America’s and their own dominance, they were not very interested in what Einstein might have to teach them about how to do science. And indeed, Einstein showed little interest in the discoveries they were most excited about, perhaps because they were expressed in the language of quantum mechanics, which he did not believe. The solution was to elevate Einstein to the status of a sage, a Yoda of Princeton, after which it would not be necessary to take him seriously. Indeed, apart from two or three assistants and some fellow refugees, few others in Princeton—even those who worked on relativity or quantum theory—ever had serious talks with him.

Einstein knew what was going on. In 1949 he wrote to Max Born,

I am generally regarded as a sort of petrified object. I find this role not too distasteful, as it corresponds very well with my temperament…. I…do not take myself nor the doings of the masses seriously, am not ashamed of my weaknesses and vices, and naturally take things as they come with equanimity and humor.

Indeed, Einstein also had something to gain by the propagation of a myth. Knowing that he had done the greatest science of the last two centuries, and aware of being the lifelong European Bohemian rebel that he was, can we imagine him descending into the pit of American academic politics and contending for a legacy measured in chairs held by students and collaborators? This indifference, however, infuriated some of the followers of relativity theory. The great astrophysicist Subrahmanyan Chandrasekhar told me that he held a lifelong grudge against Einstein for having, in his view, abandoned relativity theory and those who studied it, resulting in the subject and its followers being pushed to the fringes of physics for decades. Einstein was mainly interested in being left alone, to live his own kind of life, have his affairs and entanglements, and pursue his lifelong search for truth—a search that began and ended outside the academic establishment and indeed never fit comfortably within it.

But Einstein was famous, as no scientist has been before or since, so his every move was under scrutiny. And, in view of the tragedies that had driven him to give up his European home and move to America, we can imagine he felt compelled to continue to use his fame to speak out for principles and causes he believed in. But he was in a new country where his socialism and pacifism were widely seen as un-American. Perhaps playing the part of the lovable sage was a conscious solution to these problems; it is even possible to imagine that he borrowed something from his friend Charlie Chaplin, who also hid unpopular leftist views behind the famous image of a clown. This not only protected his privacy and excused his apparent irresponsibility, it gave him an unassailable position from which to continue to support causes then unpopular in America.

The myth describes Einstein as politically naive, but there is little evidence for that in two recent books on his political activities: Einstein on Politics, a collection of his writings, and Einstein on Race and Racism, an account of his friendships with Paul Robeson and members of Princeton’s African-American community. He was always as anti-Communist as he was socialist, and did not fall into the common trap of letting his support for good causes be exploited. He was flexible and engaged. He understood the Nazi threat earlier than many and as soon as he did he stopped supporting pacifists. His writings show that in politics as in science he had the ability to speak directly to the heart of the matter. In 1946 Einstein visited Lincoln University, a historically black institution in Pennsylvania, and was quoted as saying:

There is a separation of colored people from white people in this country. This separation is not a disease of colored people. It is a disease of white people. I do not intend to be quiet about it.

5.

In politics, it seems that Einstein was called naive for thoughts that we now understand to have been ahead of his time. Could the same have been true of his later science?

For science, the question to be answered is the paradox of Einstein’s failed last years. I would suggest that the resolution of the paradox is that Einstein’s dissent from quantum mechanics and immersion in the search for a unified field theory were not failures but anticipations. After all, even if many string theorists would disagree with Einstein about the incompleteness of quantum mechanics, much of what goes on in string theory these days looks a lot like what Einstein was doing in his Princeton years, which was trying to find new mathematics that might extend general relativity to a unification of all the forces and particles in nature.

Many of the avenues Einstein and his collaborators explored between the 1920s and the 1950s, for instance, such as the possibility of a higher number of dimensions, are now integral parts of string theory. Perhaps Einstein’s turn from analysis of physical principles to mathematical speculations was not just a foible; perhaps, in the absence of any relevant physical experiments, it was the only way forward. Or perhaps Einstein’s goal of complete unification can only be achieved by someone with the audacity and courage to disdain the mainstream and return to the physical, intuitive, and mathematically unsophisticated methodology of the young Einstein. The answers to such questions are still to come.

It is also disappointing that none of the biographers mention the writings that lead John Stachel, the founding editor of the Einstein Papers project, to speak of “the other Einstein.” These writings look beyond his struggles with the unified field theory to “the other possibility [which] leads in my opinion to a renunciation of the space-time continuum, and to a purely algebraic physics.” What Einstein is saying is that the smoothness of space is an illusion and the fundamental description of space will be in terms of algebra and not geometry. As Einstein wrote in a letter to the physicist H.S. Joachim:

An algebraic theory of physics is affected with just the inverted advantages and weaknesses [of prevailing ideas], aside from the fact that no one has been able to propose a possible logical schema for such a theory. It would be especially difficult to derive something like a spatio-temporal quasi-order from such a schema. I cannot imagine how the axiomatic framework of such a physics would appear, and I don’t like it when one talks about it in dark apostrophies. But I hold it entirely possible that the development will lead there….

Remarkably, this is precisely where most current work on unifying quantum mechanics with general relativity, apart from string theory, has led. Non-commutative geometry, spin foam models, loop quantum gravity, quantum causal histories, and others are each based on such an algebraic framework for spacetime. Between string theory and such approaches, the later Einstein appears to have anticipated much of contemporary research aiming to bring together and close the great revolutions he began.

But it also must be admitted that none of these approaches have, after great effort, succeeded in leading to either physical experiments or to complete theories that have the ring of truth that Einstein’s early theories have. A growing number of us engaged in this work believe that Dyson and his contemporaries declared the revolution over too soon, and that to finish the job Einstein started we will have to return to his preoccupations with the foundations of our understanding of space, time, matter, and the quantum.

As for Einstein’s dissent from quantum mechanics, there remains the stubborn fact that a significant proportion of those who have thought the matter through find themselves in agreement with Einstein that quantum mechanics must be understood as an incomplete approximation to a very different theory. Here also, no final judgment can be made until the scientific problems are resolved. But it is remarkable that Einstein’s last significant paper on quantum mechanics, written with Boris Podolsky and Nathan Rosen in 1935—well into his alleged deterioration—is more and more central for our understanding of quantum mechanics. This paper is built around a critical argument for the incompleteness of quantum mechanics; but its lasting significance is that it is the first paper to clearly identify a feature of quantum physics we now call entanglement.

According to quantum mechanics, once two systems have interacted they must from that point on be considered a single system, with joint properties, even if they fly far apart from each other and remain widely separated. This remarkable aspect of quantum physics—unappreciated before that paper—has become the basis of a quest for new technologies, called quantum communication, quantum computing, and quantum cryptography, which, during the next decades, may transform our world as much as the electrical technologies Einstein’s father and uncle pioneered.3 Should this happen, one can imagine that Einstein—whose revolution in science went hand in hand with his work in the patent office, observing the transformation of science into technology—would have been proud.

Letters

Einstein: An Exchange August 16, 2007

  1. 3

    See David Deutsch, The Fabric of Reality (Viking, 1997), and George Johnson, A Shortcut Through Time: The Path to the Quantum Computer (Knopf, 2003).

  • Email
  • Single Page
  • Print