• Email
  • Single Page
  • Print

The Scientist as Rebel

There is no such thing as a unique scientific vision, any more than there is a unique poetic vision. Science is a mosaic of partial and conflicting visions. But there is one common element in these visions. The common element is rebellion against the restrictions imposed by the locally prevailing culture, Western or Eastern as the case may be. The vision of science is not specifically Western. It is no more Western than it is Arab or Indian or Japanese or Chinese. Arabs and Indians and Japanese and Chinese had a big share in the development of modern science. And two thousand years earlier, the beginnings of ancient science were as much Babylonian and Egyptian as Greek. One of the central facts about science is that it pays no attention to East and West and North and South and black and yellow and white. It belongs to everybody who is willing to make the effort to learn it. And what is true of science is also true of poetry. Poetry was not invented by Westerners. India has poetry older than Homer. Poetry runs as deep in Arab and Japanese culture as it does in Russian and English. Just because I quote poems in English, it does not follow that the vision of poetry has to be Western. Poetry and science are gifts given to all of humanity.

For the great Arab mathematician and astronomer Omar Khayyam, science was a rebellion against the intellectual constraints of Islam, a rebellion which he expressed more directly in his incomparable verses:

And that inverted Bowl they call the Sky,
Whereunder crawling cooped we live and die,
Lift not your hands to It for help,
   —for it
As impotently rolls as you or I.

For the first generations of Japanese scientists in the nineteenth century, science was a rebellion against their traditional culture of feudalism. For the great Indian physicists of this century, Raman, Bose, and Saha, science was a double rebellion, first against English domination and second against the fatalistic ethic of Hinduism. And in the West, too, great scientists from Galileo to Einstein have been rebels. Here is how Einstein himself described the situation:

When I was in the seventh grade at the Luitpold Gymnasium in Munich, I was summoned by my home-room teacher who expressed the wish that I leave the school. To my remark that I had done nothing amiss, he replied only, “Your mere presence spoils the respect of the class for me.”

Einstein was glad to be helpful to the teacher. He followed the teacher’s advice and dropped out of school at the age of fifteen.

From these and many other examples we see that science is not governed by the rules of Western philosophy or Western methodology. Science is an alliance of free spirits in all cultures rebelling against the local tyranny that each culture imposes on its children. Insofar as I am a scientist, my vision of the universe is not reductionist or anti-reductionist. I have no use for Western isms of any kind. Like Loren Eiseley, I feel myself a traveler on a journey that is far longer than the history of nations and philosophies, longer even than the history of our species.

A few years ago an exhibition of Paleolithic cave art came to the Museum of Natural History in New York. It was a wonderful opportunity to see in one place the carvings in stone and bone that are normally kept in a dozen separate museums in France. Most of the carvings were done in France about 14,000 years ago, during a short flowering of artistic creation at the very end of the last Ice Age. The beauty and delicacy of the carving is extraordinary. The people who carved these objects cannot have been ordinary hunters amusing themselves in front of the cave fire. They must have been trained artists sustained by a high culture.

And the greatest surprise, when you see these objects for the first time, is the fact that their culture is not Western. They have no resemblance at all to the primitive art that arose ten thousand years later in Mesopotamia and Egypt and Crete. If I had not known that the old cave art was found in France, I would have guessed that it came from Japan. The style looks today more Japanese than European. That exhibition showed us vividly that over periods of 10,000 years the distinctions between Western and Eastern and African cultures lose all meaning. Over a time span of a 100,000 years we are all Africans. And over a time span of 300 million years we are all amphibians, waddling uncertainly out of dried-up ponds onto the alien and hostile land.

And with this long view of the past goes Robinson Jeffers’s even longer view of the future. In the long view, not only European civilization but the human species itself is transitory. Here is the vision of Robinson Jeffers, expressed in different parts of his long poem “The Double Axe.”

Come, little ones.
You are worth no more than the foxes and yellow wolfkins, yet I will give you wisdom.
O future children:
Trouble is coming; the world as of the present time
Sails on its rocks; but you will be born and live
Afterwards. Also a day will come when the earth
Will scratch herself and smile and rub off humanity:
But you will be born before that.

Time will come, no doubt,
When the sun too shall die; the planets will freeze, and the air on them; frozen gases, white flakes of air
Will be the dust: which no wind ever will stir: this very dust in dim starlight glistening
Is dead wind, the white corpse of wind.
Also the galaxy will die; the glitter of the Milky Way, our universe, all the stars that have names are dead.
Vast is the night. How you have grown, dear night, walking your empty halls, how tall!

Robinson Jeffers was no scientist, but he expressed better than any other poet the scientist’s vision. Ironic, detached, contemptuous like Einstein of national pride and cultural taboos, he stood in awe of nature alone. He stood alone in uncompromising opposition to the follies of the Second World War. His poems during those years of patriotic frenzy were unpublishable. “The Double Axe” was finally published in 1948, after a long dispute between Jeffers and his editors. I discovered Jeffers thirty years later, when the sadness and the passion of the war had become a distant memory. Fortunately, his works are now in print and you can read them for yourselves.

Science as subversion has a long history. There is a long list of scientists who sat in jail and of other scientists who helped get them out and incidentally saved their lives. In our century we have seen the physicist Landau sitting in jail in the Soviet Union and Kapitsa risking his own life by appealing to Stalin to let Landau out. We have seen the mathematician André Weil sitting in jail in Finland during the Winter War of 1939–1940 and Lars Ahlfors saving his life. The finest moment in the history of the Institute for Advanced Study, where I work, came in 1957, when we appointed the mathematician Chandler Davis a member of the Institute, with financial support provided by the American government through the National Science Foundation. Chandler was then a convicted felon because he refused to rat on his friends when questioned by the House Un-American Activities Committee. He had been convicted of contempt of Congress for not answering questions and had appealed against his conviction to the Supreme Court.

While his case was under appeal, he came to Princeton and continued doing mathematics. That is a good example of science as subversion. After his Institute fellowship was over, he lost his appeal and sat for six months in jail. Chandler is now a distinguished professor at the University of Toronto and is actively engaged in helping people in jail to get out. Another example of science as subversion is Andrei Sakharov. Chandler Davis and Sakharov belong to an old tradition in science that goes all the way back to the rebels Franklin and Priestley in the eighteenth century, to Galileo and Giordano Bruno in the seventeenth and sixteenth. If science ceases to be a rebellion against authority, then it does not deserve the talents of our brightest children. I was lucky to be introduced to science at school as a subversive activity of the younger boys. We organized a Science Society as an act of rebellion against compulsory Latin and compulsory football. We should try to introduce our children to science today as a rebellion against poverty and ugliness and militarism and economic injustice.

The vision of science as rebellion was articulated in Cambridge with great clarity on February 4, 1923, in a lecture by the biologist J.B.S. Haldane to the Society of Heretics. The lecture was published as a little book with the title Daedalus. Here is Haldane’s vision of the role of scientist. I have taken the liberty to abbreviate Haldane slightly and to omit the phrases that he quoted in Latin and Greek, since unfortunately I can no longer assume that the heretics of Cambridge are fluent in those languages.

The conservative has but little to fear from the man whose reason is the servant of his passions, but let him beware of him in whom reason has become the greatest and most terrible of the passions. These are the wreckers of outworn empires and civilizations, doubters, disintegrators, deicides. In the past they have been men like Voltaire, Bentham, Thales, Marx, but I think that Darwin furnishes an example of the same relentlessness of reason in the field of science. I suspect that as it becomes clear that at present reason not only has a freer play in science than elsewhere, but can produce as great effects on the world through science as through politics, philosophy or literature, there will be more Darwins.

We must regard science, then, from three points of view. First, it is the free activity of man’s divine faculties of reason and imagination. Secondly, it is the answer of the few to the demands of the many for wealth, comfort and victory, gifts which it will grant only in exchange for peace, security and stagnation. Finally it is man’s gradual conquest, first of space and time, then of matter as such, then of his own body and those of other living beings, and finally the subjugation of the dark and evil elements in his own soul.

I have already made it clear that I have a low opinion of reductionism, which seems to me to be at best irrelevant and at worst misleading as a description of what science is about. Let me begin with pure mathematics. Here the failure of reductionism has been demonstrated by rigorous proof. This will be a familiar story to many of you. The great mathematician David Hilbert, after thirty years of high creative achievement on the frontiers of mathematics, walked into a blind alley of reductionism. In his later years he espoused a program of formalization, which aimed to reduce the whole of mathematics to a collection of formal statements using a finite alphabet of symbols and a finite set of axioms and rules of inference. This was reductionism in the most literal sense, reducing mathematics to a set of marks written on paper, and deliberately ignoring the context of ideas and applications that give meaning to the marks. Hilbert then proposed to solve the problems of mathematics by finding a general process that could decide, given any formal statement composed of mathematical symbols, whether that statement was true or false. He called the problem of finding this decision process the Entscheidungsproblem. He dreamed of solving the Entscheidungsproblem and thereby solving as corollaries all the famous unsolved problems of mathematics. This was to be the crowning achievement of his life, the achievement that would outshine all the achievements of earlier mathematicians who solved problems only one at a time.

  • Email
  • Single Page
  • Print