• Email
  • Single Page
  • Print

Diving Deep into Danger

rich_1-020713.jpg
Bill Curtsinger/National Geographic Stock
A diver exploring a gap in the ice of McMurdo Sound, Antarctica

The first dive to a depth of a thousand feet was made in 1962 by Hannes Keller, an ebullient twenty-eight-year-old Swiss mathematician who wore half-rimmed glasses and drank a bottle of Coca-Cola each morning for breakfast. With that dive Keller broke a record he had set himself one year earlier, when he briefly descended to 728 feet. How he performed these dives without killing himself was a closely guarded secret. At the time, it was widely believed that no human being could safely dive to depths beyond three hundred feet. That was because, beginning at a depth of one hundred feet, a diver breathing fresh air starts to lose his mind.

This condition, nitrogen narcosis, is also known as the Martini Effect, because the diver feels as if he has drunk a martini on an empty stomach—the calculation is one martini for every additional fifty feet of depth. But an even greater danger to the diver is the bends, a manifestation of decompression sickness that occurs when nitrogen gas saturates the blood and tissues. The problem is not in the descent, but the ascent. As the diver returns to the surface, the nitrogen bubbles increase in size, lodging in the joints, arteries, organs, and sometimes the brain or spine, where they can cause pain and potentially death. The deeper a diver descends, the more slowly he must ascend in order to avoid the bends.

In 1956 a Royal Navy boatswain had successfully dived to six hundred feet, breathing a mixture of helium and oxygen to avoid nitrogen narcosis, but he took twelve hours to resurface. Keller, by comparison, returned to the surface after his first record dive in less than an hour. He boasted of using “secret” mixtures of gases for his underwater breathing apparatus, with different mixtures designed for different depths, but wouldn’t disclose exact figures. After an editor from Life, who had accompanied Keller on his 728-foot dive, wrote an article about their accomplishment, the US Navy took interest. So did the Shell Oil Company.

The Navy gave Keller $22,000 to finance the thousand-foot dive. Shell provided an experimental offshore drilling ship called the Eureka and a decompression chamber; at the time Shell had already begun to drill offshore, but only to a depth of 250 feet. Keller chose as his diving partner another journalist, Peter Small, the thirty-five-year-old editor of Triton magazine (now Diver) and a founder of the British Sub-Acqua Club. The dive took place in Southern California, off Santa Catalina Island; Keller and Small planned to be the first men to set foot on the Continental Shelf. Observers aboard the Eureka included several officers from the US Navy’s experimental diving program; a group from Shell Oil; two young safety divers; and Mary Small, Peter’s twenty-three-year-old wife. The Smalls had been married less than three months earlier.

Shortly before noon on December 3, the men entered a diving chamber called the Atlantis, which Keller had designed and built. It was seven feet high and four and a half feet in diameter, with a bottom hatch through which the divers could exit. The Atlantis was connected to the Eureka by various cables, one of which allowed the observers to watch the divers on closed-circuit television. It took sixteen minutes for the Atlantis to descend one thousand feet, including breaks for the divers to check equipment and switch air mixtures. At the bottom, five feet above the seabed, Keller left through the hatch. He was armed with two flags, Swiss and American, which he planned to plant on the ocean floor.

But as soon as he exited into the dark water, the fabric of the flags became entangled with his breathing hoses. He couldn’t see. It took him two minutes to free himself of the flags, at which point he returned to the diving chamber, exhausted and dizzy. In his confusion Keller didn’t realize that one of his swim fins had become stuck in the hatch, preventing it from closing properly. When he figured out that his special mixture of gas was leaking, and that there was not enough to sustain them for the ascent, he switched to regular air, and the two men instantly passed out.

The crew aboard the Eureka pulled the diving chamber to a depth of two hundred feet, and the two safety divers went to investigate. They found that the chamber was losing pressure, but were unable to seal it. When one of the divers, a UCLA undergraduate and friend of Small’s named Chris Whittaker, resurfaced, his face was bloody. He appeared dazed. Against the advice of the support crew Whittaker and his partner made a second dive to retrieve Small. The other diver cut away the fin, allowing the hatch to seal, but Whittaker did not return. His body was never found.

Once sealed, the Atlantis was pulled to the surface. Both Keller and Small recovered consciousness. For six hours they remained within the chamber while the air pressure was gradually decreased. Keller, apart from experiencing oxygen hallucinations for thirty minutes, reported few ill effects. Small slept fitfully. After several hours Keller noticed that Small had stopped breathing. His mouth was foaming. The chamber was opened, and Small was rushed to a Navy hospital ship, but it was too late. A coroner determined that the cause of death was decompression sickness. Small’s tissues and organs were riddled with gas bubbles.

Nevertheless Keller had managed to validate his theory. Life ran a follow-up article that included an interview with Kenneth MacLeish, the editor who had accompanied Keller on the earlier dive. “The concept was brilliant; perhaps its implementation was not,” said MacLeish, in a rather gruesome understatement. He continued:

Keller will go on with his work and every serious diver and student of the sea must be glad of that. His method will help open up the seas to the free diver, unencumbered, unenclosed, able to reach out and touch…and the human animal will extend still further his unique ability to go where he is not designed to go.

MacLeish was more prophetic than he knew. When executives at Micoperi, an Italian company that specializes in marine construction, read about Keller’s achievement, they urged Shell to provide him with additional funding. The two companies worked together to build new facilities for Keller to continue his experiments, forming a joint-venture company called Sub Sea Oil Services. During the next twenty years, Shell’s divers would descend as deep as 1,900 feet. The free diver would revolutionize the oil industry, allowing human beings to extract oil in many places where they were not designed to go.1

Mary Small, widowed at twenty-three, would take no solace in this. When she was interviewed by a reporter right after the Catalina tragedy, she called her husband’s death “just one of those diving accidents.” But nine weeks later she committed suicide. She was found at her London home, photographs of her husband strewn on the floor around her, in a room filled with gas.

Today it is an economic and even geopolitical necessity for oil companies, in order to maintain pipelines and offshore rigs, to send divers routinely to depths of a thousand feet, and keep them at that level of compression for as long as a month at a time. The divers who do this work are almost entirely male, and tend to be between the ages of twenty-five and forty. Were they any younger, they would not have enough experience or seniority to perform such demanding tasks. Any older, and their bodies could not be trusted to withstand the trauma. The term for these extended-length descents is “saturation diving,” which refers to the fact that the diver’s tissues have absorbed the maximum amount of inert gas possible.

The industry is currently in the midst of an expansion that originated in 2005, after Hurricanes Katrina and Rita together destroyed more than one hundred drilling platforms in the Gulf of Mexico and compromised another fifty; the storms also damaged nearly two hundred pipelines, contributing to four hundred incidents of pollution. Remotely operated vehicles could only assess and repair some of the damage, so much of the work had to be done by divers. Wages increased accordingly, and since then, as the oil industry has drilled in increasingly deep waters, demand for divers has continued to grow.

Not everybody is cut out for the job. A diver cannot be claustrophobic or antisocial, because he must spend much of his time in a tiny sealed capsule with several other divers. He must be well-disciplined and perceptive, for he is likely to encounter a variety of unexpected hazards on the job. Many divers are military veterans, or have worked as roofers or mechanics. “The best are those who have a great deal of confidence in themselves and their abilities,” one former diver, Phil Newsum, told me. “You have to be willing to adapt to any situation. Philosophically, when you go out on a dive job, you’re expecting something is going to go wrong.”

Often, because of the depth, the job is performed in the dark, with only a headlamp to light the way. Divers have told me stories of sudden encounters with manta rays, bull sharks, and wolf eels, which can grow eight feet long and have baleful, recessed eyes, a shovel-shaped snout, and a wide, snaggletoothed mouth. One diver sent me a video, filmed from a camera in the diver’s helmet, of an enormous turtle that was playing a game of trying to bite off the diver’s feet and hands every few minutes. The diver finally sent the animal swimming away by pressing a power drill to its head. Someone else sent me a photograph of a diver riding a speckled whale shark, as if on a rodeo bronco.

Newsum, who is now the director of an industry group called the Association of Diving Contractors International (ADCI), estimates that only three of every fifteen people who graduate from commercial diving school are able to withstand the rigor of the profession for a full career. Many are enticed by the high salaries, but few can endure the job’s physical and psychological toll. Those who stick it out tend to do so out of a passion for the job’s eccentricities.

The life of a commercial diver is somewhat less stable than that of a traveling salesman or mercenary soldier. He does not make his own schedule and has little control over his own fate, which is one reason why divers between jobs have a reputation for, as Newsum puts it, “living hard.” The diver never knows when his next job will come, but as soon as he gets called for an assignment, he must head directly to the nearest port or helicopter pad. A successful diver will work offshore about 160 days a year, cumulatively. A job might last a day, or two months. Work is most consistent, at least in the Gulf of Mexico, in the warmer months, from late March through November, but hurricane season falls within that period. Hurricanes are a mixed blessing—they disrupt ongoing jobs, but they create new ones.

  1. 1

    For a deft account of deep diving history, see Ben Hellwarth, Sealab: America’s Forgotten Quest to Live and Work on the Ocean Floor (Simon and Schuster, 2012), which focuses on the Navy’s efforts to create an underwater habitat capable of sustaining human life. 

  • Email
  • Single Page
  • Print