Steven Weinberg teaches at the University of Texas at Austin. He has been awarded the Nobel Prize in Physics and the National Medal of Science. His latest book for general readers is Lake Views: This World and the Universe.

IN THE REVIEW

Eye on the Present—The Whig History of Science

‘Scenography of the Copernican World System’; engraving from Andreas Cellarius’s Harmonia macrocosmica, 1660
It was the Cambridge historian Herbert Butterfield who described and condemned what he called “the Whig interpretation of history.” In a book with that title, the young Butterfield in 1931 declared that “the study of the past with one eye, so to speak, upon the present is the source of …

Physics: What We Do and Don’t Know

A view of about a quarter of the ‘Hubble Deep Field,’ a tiny patch of sky about one thirtieth the diameter of the full moon, photographed in December 1995 by the Hubble Space Telescope with an exposure time of ten days, showing the ‘deepest-ever’ view of the universe. The galaxies in this picture are so far away that their light has been traveling to us for most of the history of the universe.
In the past fifty years two large branches of physical science have each made a historic transition. I recall both cosmology and elementary particle physics in the early 1960s as cacophonies of competing conjectures. By now in each case we have a widely accepted theory, known as a “standard model.”

The Election—IV

Here is the Romney strategy: since you don’t like what you’ve got, vote for what you haven’t got. Whatever it is you haven’t got, it is better than what you’ve got. That was supposed to be enough to secure election after what we’ve got—Obama’s apparent economic failure. But the Romney campaign is taking what-you-haven’t-got-ism to new heights of what-you-mustn’t-know-ism.

Why the Higgs?

Part of CERN’s Large Hadron Collider under construction, Cessy, France, 2007
The following is part of an introduction to James Baggott’s new book Higgs: The Invention and Discovery of the “God Particle,” which will be published in August by Oxford University Press. Baggott wrote his book anticipating the recent announcement of the discovery at CERN near Geneva—with some corroboration from Fermilab—of …

The Crisis of Big Science

Construction of an underground shaft for the Superconducting Super Collider in Texas. The SSC was supposed to be the largest particle accelerator in the world, but its funding was canceled by Congress in 1993.
During the debate over the Superconducting Super Collider, I was on the Larry King radio show with a congressman who opposed it. He said that he wasn’t against spending on science, but that we had to set priorities. I explained that the SSC was going to help us learn the laws of nature, and I asked if that didn’t deserve a high priority. I remember every word of his answer. It was “No.”

Symmetry: A ‘Key to Nature’s Secrets’

The five regular polyhedra. Steven Weinberg writes that ‘they satisfy the symmetry requirement that every face, every edge, and every corner should be precisely the same as every other face, edge, or corner.... Plato argued in Timaeus that these were the shapes of the bodies making up the elements: earth consists of little cubes, while fire, air, and water are made of polyhedra with four, eight, and twenty identical faces, respectively. The fifth regular polyhedron, with twelve identical faces, was supposed by Plato to symbolize the cosmos.’
In conversations with friends who are not physicists or mathematicians, I find that they often take symmetry to mean the identity of the two sides of something symmetrical, like the human face or a butterfly. That is indeed a kind of symmetry, but it is only one simple example of a huge variety of possible symmetries.

NYR DAILY

The Big Higgs Question

The central part of the Compact Muon Solenoid is lowered into place, Cessy, France, February 28, 2007

By the 1980s we had a good comprehensive theory of all observed elementary particles and the forces (other than gravitation) that they exert on one another. One of the essential elements of this theory is a symmetry, like a family relationship, between two of these forces, the electromagnetic force and the weak nuclear force. Electromagnetism is responsible for light; the weak nuclear force allows particles inside atomic nuclei to change their identity through processes of radioactive decay. The symmetry between the two forces brings them together in a single “electroweak” structure. The general features of the electroweak theory have been well tested; their validity is not what has been at stake in the recent experiments at CERN and Fermilab, and would not be seriously in doubt even if no Higgs particle had been discovered. But one of the consequences of the electroweak symmetry is that, if nothing new is added to the theory, all elementary particles, including electrons and quarks, would be massless, which of course they are not. So, something has to be added to the electroweak theory, some new kind of matter or field, not yet observed in nature or in our laboratories. The search for the Higgs particle has been a search for the answer to the question: What is this new stuff we need?