The Question of Global Warming

I begin this review with a prologue, describing the measurements that transformed global warming from a vague theoretical speculation into a precise observational science.

There is a famous graph showing the fraction of carbon dioxide in the atmosphere as it varies month by month and year by year (see the graph). It gives us our firmest and most accurate evidence of effects of human activities on our global environment. The graph is generally known as the Keeling graph because it summarizes the lifework of Charles David Keeling, a professor at the Scripps Institution of Oceanography in La Jolla, California. Keeling measured the carbon dioxide abundance in the atmosphere for forty-seven years, from 1958 until his death in 2005. He designed and built the instruments that made accurate measurements possible. He began making his measurements near the summit of the dormant volcano Mauna Loa on the big island of Hawaii.

Concentration of Carbon Dioxide in the Atmosphere

He chose this place for his observatory because the ambient air is far from any continent and is uncontaminated by local human activities or vegetation. The measurements have continued after Keeling’s death, and show an unbroken record of rising carbon dioxide abundance extending over fifty years. The graph has two obvious and conspicuous features. First, a steady increase of carbon dioxide with time, beginning at 315 parts per million in 1958 and reaching 385 parts per million in 2008. Second, a regular wiggle showing a yearly cycle of growth and decline of carbon dioxide levels. The maximum happens each year in the Northern Hemisphere spring, the minimum in the Northern Hemisphere fall. The difference between maximum and minimum each year is about six parts per million.

Keeling was a meticulous observer. The accuracy of his measurements has never been challenged, and many other observers have confirmed his results. In the 1970s he extended his observations from Mauna Loa, at latitude 20 north, to eight other stations at various latitudes, from the South Pole at latitude 90 south to Point Barrow on the Arctic coast of Alaska at latitude 71 north. At every latitude there is the same steady growth of carbon dioxide levels, but the size of the annual wiggle varies strongly with latitude. The wiggle is largest at Point Barrow where the difference between maximum and minimum is about fifteen parts per million. At Kerguelen, a Pacific island at latitude 29 south, the wiggle vanishes. At the South Pole the difference between maximum and minimum is about two parts per million, with the maximum in Southern Hemisphere spring.

The only plausible explanation of the annual wiggle and its variation with latitude is that it is due to the seasonal growth and decay of annual vegetation, especially deciduous forests, in temperate latitudes north and south. The asymmetry of the wiggle between north and south is caused by the fact that the Northern Hemisphere has most of the land area and most of the deciduous forests. The wiggle is giving us a direct measurement …

This article is available to subscribers only.
Please choose from one of the options below to access this article:

Print Premium Subscription — $94.95

Purchase a print premium subscription (20 issues per year) and also receive online access to all all content on nybooks.com.

Online Subscription — $69.00

Purchase an Online Edition subscription and receive full access to all articles published by the Review since 1963.

Letters

How Long Will They Stay? October 9, 2008

The Question of Global Warming’: An Exchange September 25, 2008

The Brief Life of a Molecule July 17, 2008