The Golden Arm


edited by Marvin Minsky
Anchor/Doubleday, 317 pp., $19.95

Work Transformed: Automation and Labor in the Computer Age

by Harley Shaiken
Holt, Rinehart and Winston, 306 pp., $17.95

The Robotics Revolution: The Complete Guide for Managers and Engineers

by Peter B. Scott
Basil Blackwell, 345 pp., $24.95

Robots: Machines in Man's Image

by Isaac Asimov and Karen A. Frenkel
Harmony Books, 246 pp., $19.95

Smart Robots: A Handbook of Intelligent Robotic Systems

by V. Daniel Hunt
Chapman and Hall, 377 pp., $42.50


During the 1960s, researchers at a company now called SRI International built a mobile robot. “Shakey,” a wheel-driven cart that carried a television camera and a radio link to a separate minicomputer, was designed to move in response to programmed commands. When he received instructions to go from one point in a room to another, for example, the camera would form images of the robot’s immediate vicinity. Like printed photographs, such images consisted of dots representing the presence or absence of light. This arrangement of dots was fed into the minicomputer, which “digitized” it—that is, transformed it into a sequence of ones and zeros. A computer program for recognizing visual patterns compared the new sequence with others previously stored in the computer’s memory. If the computer found a match, it “understood” the robot’s position in relation to surrounding objects. This information could then be used by other programs devised to solve simple problems.

At first Shakey was merely told to push boxes about a room. In 1971 a second, more advanced version of the robot was placed near three other objects: a tall platform, a box lying directly upon it. and a ramp several feet away. Shakey was then ordered to knock the box off the platform, but at first he failed even to reach it. Next, however, he nudged the ramp over to the platform, scampered up the one and onto the other, and coolly pushed the box to the floor. In effect he had “figured out” that the ramp was a means to his end.

Shakey was slow—he spent an hour or so identifying the block and the ramp. His world consisted entirely of large, smooth boxes and clean, smooth walls; anything else literally blew his mind. Unlike most robots; which include mechanical arms that can manipulate objects with some degree of skill, Shakey could only move from place to place. Yet in a sense he could “see,” and in a sense he could “think.” Most industrial robots can do neither.

They don’t have to. Much of what goes on in a factory involves picking things up, moving them, and putting them down. Almost all work of this kind can already be done by robots, though in most cases human labor is cheaper. We cannot be quite sure how long human beings will continue to enjoy that advantage. But we do know who will be most affected when they lose it—in some cases, to improved versions of robots like Shakey. The welders, painters, machinists and toolmakers, machine operators, inspectors, and industrial assemblers of our society—in short, most of the industrial working class—will be facing the end of the road in the not far distant future. If we pretend that this transformation will automatically create new jobs for the men and women it displaces, we will probably end up with a vastly expanded underclass, not a vastly expanded pool of computer programmers.

Unlike the steam engine, the spinning mule, and the power loom, robots were conceived long…

This is exclusive content for subscribers only.
Get unlimited access to The New York Review for just $1 an issue!

View Offer

Continue reading this article, and thousands more from our archive, for the low introductory rate of just $1 an issue. Choose a Print, Digital, or All Access subscription.

If you are already a subscriber, please be sure you are logged in to your account.